
Continuous Performance Analysis
for Python with



whoami

Arthur Pastel
Software Engineer

twitter.com/art049

github.com/art049

linkedin.com/in/arthurpastel

Open Source Developer:

Built ODMantic🍃 

Weapons of choice:

Building



Software Performance?

- Execution speed 

- Throughput



APMs

- Sentry

- Datadog

- Blackfire

- Cloud Providers



The Software Development Life Cycle(aka SDLC



Performance feedback in the SDLC



Problems

● Performance issues identified in production

● Experiments in production environments

● Dev ! Ops

● Costs



Shifting left



The ideal workflow

● Performance checks as a testing flavour

● Block merging upon regression

● Reliable performance history

● Compare performance from anywhere



Requirements for the performance metric

● Consistent

● Repeatable

● Hardware agnostic



Measuring performance



The toy algorithm



Basic approach

time.time: system clock

time.perf_counter: high resolution timer



Stats to the rescue

30% faster



Under the hood

Optimized

Not optimized

Solutions:

● Warmup rounds

● Disable garbage collection

Sample distribution



Stats to the rescue(with warmup)

Improvements: more samples, conditional warmup, outlier 
removal



Further improvements

- Conditional warmup
- Remove outliers
- More samples
- Disable the Garbage Collector



Frameworks

- pytest-benchmark

- airspeed velocity

- pyperformance



In a CI environment

Time measurement for a Fibonacci sequence computation(runs from GitHub Action)



What else? 



Performance monitoring counters



CPU Cache Architecture

1ns

2.5ns

11ns

45ns

Latency

64KB

256KB

16MB

Size



Virtualization issue



Simulated caches



Results with CodSpeed

CodSpeed Measurement for a Fibonacci sequence computation(runs from GitHub Action)



Strawberry GraphQL

ORMs, ODMs, …

V2 rewritten in Rust 🦀



Demo



Recap

Supported languages

Performance reporting during development

Visibility for future deliveries



Thank you!


