{codspeed s>}

Trust Your Benchmarks, Not Your Instincts:

A Rust Performance Quiz

{codspeed s>}

whoarewe

(e) -
g,

| @"”!i

11 4
I . I
-

.
Arthu

S _
.I %
Ll) LE
£ N AR

We're building

{codspeed %>}

{codspeed s>}

Why performance matters?

e User experience and revenue

o Every 100ms faster - 1% more conversions (Mobify, earning +$380,000/yr)
e Competitive advantage

o Performance is a feature
e C(Cost savings

o Less compute for same workloads

e Sustainability

o Reduced data center footprint

codspeed #$»
Why performance matters even more today? Sl

Compute performance is unlikely to see further improvements Demand for computational resources is increasing exponentially

Relying on hardware improvement does not work anymore.
We need to dive in the software itself and start optimizing it heavily.

Getting performance right is hard

e¢ Humans are not machines

e Even the best performance expert will get things wrong

Don’t trust us vet”?

L et's see!

Scan this QR

code to joIn i

{codspeed s>}

The quiz

There is a leaderboard counting points
Correct answers earn points

Faster answers earn more points

The WINNER receives a prize g

We'll tell you everytime there is a new question to answer

{codspeed s>}

Measurement

Performance is measured with Rust 1.90.0 on a bare-metal
Instance with a 16 cores x86_64 CPU with
Profile: release
For each question:
o Answer with an implementation as the fastest

o Or answer by saying the performance will be the same

(+/- 10% to guarantee an actual change)

{codspeed s>}

Case study #1: Debug vs Release

arr size 1000

pub fn bubble_sort(arr: &mut [1i32]) {
let n = arr.len();
for 1 in 0..n {

VS for 3 in 0..n - 1 - 1 {

if arr[j] > arr[j + 1] {
arr.swap(j, j + 1);

cargo bench --profile bench }

cargo bench --profile debug

(uses bench profile by default)

{codspeed s>}

Case study #1: Debug vs Release

arr size 1000

pub fn bubble_sort(arr: &mut [i32]) {
let n = arr.len();
for 1 in 0..n {
for j in 0..n - 1 - 1 {
if arr[j] > arr[j + 1] {
arr.swap(j, j + 1);

cargo bench|--profile debug
VS

cargo bench|--profile bench f

(uses bench profile by default)

Which is faster?

128

21

: I
]

 dev profile Y same (+/- 10%) v/ bench profile
U157 &

Answer

dev profile |

bench profile |

0 3 Mms 6 ms O ms 12 ms 15 ms

bench_profile is faster

Why?

[profile.dev]

[profile.release]

opt-level = 0 P oOpt-level = 3

debug = true

strip = "none”
debug-assertions
overflow-checks

lto = false

panic = 'unwind'
true
256

incremental =
codegen-units
rpath = false

opt-level has the most impact

- optimized assembly
- slower build time

Resources: https://doc.rust-lang.org/cargo/reference/profiles.html

true €¢——Pp
true -g——-_fp

debug = false

strip = "none"
debug-assertions = false
overflow-checks = false
lto = false

panic = 'unwind'
incremental = false
codegen-units = 16

rpath = false

[profile.bench]
inherits = "release"
debug = true

{codspeed s>}

Case study #2: Bit shift vs Multiplication with const

X IS an argument, y is a const

X = 10000

const y: u3Z2 = 6;

pub fn mul_pow(x: ub4) — ub4 {
Multiply x by 2"y } X * 2u64.pow(y)
Shifts x left by y bits pub fn mul_shl(x: u64) — u6b4 {

(same as multiplying by 2%y) <<y

Which is faster?

const y: u32 = 6;

pub fn mul _pow(x: ub4) — ub4 {
X * 2u64.pow(y)

}

pub fn mul_shl(x: u64) — ub4 {
X <<
}

2

" mul_shl
W1i75 &

' mul_pow vV same (+/- 10%)

Answer

mul_pow vs mul_shl (x=10000)

s |

Same performance

{codspeed s>}

Why?

Rust compilation pipeline:

I Rust Code |—-—>| LLVM IR Assembly —Linker—» Binary I

Let's look at the assembly code of both implementations

{codspeed s>}

Why?
const y: u32 = 6; mul_ pow
mov rax, rdi
pub fn mul pow(x: u64) — ub4 { shl rax, 6
X * 2ub4.pow(y) ret
} ﬁ
mul shl
pub fn mul_shl(x: u64) — ub4s { mov rax, rdi
X <<y shl rax, O
¥ ret

How do we end up with the same assembly code?

Why?

powis aconst fn

Constant Evaluation: the process of
computing the result of expressions
during compilation

Use const where it makes sense to
enable compiler optimizations core::num::uint_macros

Resources: https://doc.rust-lang.ora/reference/const_eval.htmi

{codspeed s>}

Case study #2: Bit shift vs Multiplication

X=5, Yy=04

Now both x and y are arguments pub fn mul_pow(x: u64, y: u32) — ul28 {
X * 2ul28.pow(y)

b

pub fn mul_shl(x: u64, y: u32) — ul28 {
X <<y

}

Which is faster?

X=5, Yy=04

pub fn mul _pow(x: u64, y: u32) — ul28 {
X * 2u128.pow(y)

'

pub fn mul_shl(x: u64, y: u32) — ul28 {
X <<y

}

/

]
> mul_pow Y same (+/- 10%)

v/ mul_shl
Wi67 &

Answer

mul_pow vs mul_shl (x=5, y=64)

50 ns 100 ns 150 ns 200 ns 2950 ns 300 ns

mul shl is faster

Why'? mul shl
mov ecx, esi
mov rax, rdi
shl rax, cil
ret

This time the assembly code is way longer for
mul_pow.

Since y Is not a const, the compiler cannot
compute the expression anymore.

mul_pow

loop

.LBBO 6

.LBBO 4

.LBBO 1

test
je

jmp

shr
imul

test
je

imul
cmp
jne
imu L
ret

mov
imul
ret

{codspeed s>}

es1l, esil
.LBBO 1
ecx, 2
eax, 1
.LBBO 4

esi
PCX, IcX

sil, 1
.LBBO 6
Pax, rcx
esi, 1
.LBBO 6
rax, rdi

eax, 1
rax, rdi

{codspeed s>}

Case study #3: Powers

Xx=1000

- FAN
CompUtmg X"10 pub fn pow_10 loop(x: ub4) — ub4 {

let mut acc: ub4 = 1;
for in 0..10 {

}

ace %= x:
acc

}

pub fn pow 10 fast(x: u64) — ub4 {
X % X kX * X Ok X kX kX kX * X kX
}

Which is faster?

Xx=1000

113

pub fn pow_10 loop(x: ub64) — ub4 {
let mut acc: ub4 = 1;
for in 0..10 {
ACC *= X:

}

dCC

}

pub fn pow 10 fast(x: u64) — ub4 {
X %k X * X *k Xk X kX ® X kX % X * X
}

18

Y pow_10_loop V/ same (+/- 10%) > pow_10_fast
$1i73 &

Answer

pow_10 algorithm performance comparison (x = 1000)

-

30 ns 60 ns 90 ns 120 ns 150 ns 180 ns 210 ns

Same performance

Why?

pow_ 10 Lloop
1mul

pub fn pow_10 loop(x: u64) — ubs4 { mov

}

let mut acc: ub4 = 1; 1mul
for in 0..10 { imul

aCC *= X; imul

} ret
acc »

pow 10 fast

mov

pub fn pow 10 fast(x: ub4) — ub4 { imul

}

X % X ¥ X % X X ¥ X *X X * X * X imul
imul
1mul
ret

{codspeed s>}

rdi,
rax,
rax,
rdi,
rax,

rax,
rax,
rax,
rax,
rax,

rdi
rdi
rdi
rax
rdi

rdi
rdi
rax
rdi
rax

Compiler optimizes and uses loop unrolling on the constant for loop

Case study #4: Inline Assembly

pub fn rust_sum(mut acc: ub4, n: ub4) — ubLs {
for 1 in 0..n {
acc = acc.wrapping _add(i);
}

aCC

pub fn asm _sum(mut acc: u64, n: ub4) — ubs {
for 1 in 0..n {
unsafe {

core::arch::asm!(
"add {acc}, {i}",
acc = 1nout(reg) acc,
i = in(reg) 1,
options(nostack, nomem, preserves flags),

Which is faster?

pub fn rust_sum(mut acc: u64, n: u64) — ubs {
for i in 0..n {

acc = acc.wrapping_add(i);
}

dCC

}

pub fn asm_sum(mut acc: u64, n: ub4) — ub4s {
for i in 0..n {
unsafe {

core::arch::asm!(
"add {acc}, {i}",
acc = inout(reg) acc,
i = in(reg) 1,
options(nostack, nomem, preserves flags),

v/ rust_sum Y same (+/- 10%) asm_sum

Y167 &

{codspeed s>}

Answer

Rust vs Inline Assembly (n=1000)

rust sumis faster

{codspeed s>}

Answer

asm_sum (inline assembly) - Sum Benchmark (Various n)

1,000 2,000,000 4 000,000 0,000,000 3,000,000

asm sumis O(n)

{codspeed s>}

Answer

rust_sum (Rust optimized) - Sum Benchmark (Various n)

......

1 000 2 000.000 4.000.000 6,000,000 8,000 000 10,000,000

rust sumis 0(1)

Why? asm_sum

pub fn asm_sum(mut acc: u64, n: ub4) — ub4 {
for 1 in 0..n {
unsafe {

core::arch::asm!(
"add {acc}, {i}", .LBB1_2
acc = inout(reg) acc,
i = in(reg) 1i,
options(nostack, nomem, preserves flags),

);

daCC

.LEBB1_3

mov
test
je

XOr

add
lea
mov
cmp

jne

ret

{codspeed s>}

rax, rdi s rax = a (result = a)
Ir'sl, rsi ; check if n = 0

.LBB1 3 ; 1f n = 0 » return a
ecx, ecx ; 1 =0 (loop counter)
rax, rcx ; result += 1

rdx, [rcx + 1] cnext 1 =1 + 1

rcx, rdx ; 1 = next_1

rsi, rdx ; compare 1 with n

.LBB1 2 ; 1f 1 % n, continue loop

; return result (in rax)

jumps — asm_sumis O(n)

{codspeed s>}

Why?

rust_sum
test rsi, rsi ; check 1f n = 0
je .LBBO _2 ; 1f yes, jump to return a
add rdi, rsi ; rdi = a +n
pub fn rust_sum(mut acc: ub4, n: ub4) — ub4s { L Loy Biries ol FRERE
for i in @..n { | | add rsi, -2 sorsi =0 = 2
} BES S AEEWEARRARE SOHLE Y mul rsi ; multiply: rdx:rax = (n - 1) » (n - 2)
\ ace shld rdx, rax, 63 ; rdx = ((n - 1)*(n - 2)) > 1 (div by 2)
add rdi, rdx ; rdi += (n - 1)*(n - 2)/2
dec rdi
.LBBO_2
mov rax, rdi ; return value = rdi
ret

No branching i1n this code except the
first check if n = 0 = rust sumis 0(1)

{ codspeed #»}

N

Why? n(n+1)

2

pub fn rust sum(mut acc: ub4, n: ub4) — ub4s {
for 1 in 0..n {
acc = acc.wrapping add(1i);
}

dCC

No branching 1n this code except the
first check i1f n = @ = rust sumis0(1)

First Triangular Numbers

{codspeed s>}

Case study #5: Bound checks

arr size 10000 with random integers from 1to 1000

pub fn sum_normal(arr: &[u32]) — u32 {
let mut sum = Qu32;
for &value in arr {

Sum the elements of an sum = sum + value;

array of integers lum

}

fn sum unchecked(arr: &[u32]) — u32 {
let mut sum = Qu32;
for &value in arr {
sum = unsafe { sum.unchecked add(value) };
}

sum

Which is faster?

arr size 10000 with random integers from 1to 1000

pub fn sum_normal(arr: &[u32]) = u32 {
Llet mut sum = Qu32;

for &value in arr {
sum = sum + value;

sum

}
fn sum_unchecked(arr: &[u32]) — u32 {
let mut sum = Qu32;

for &value in arr {
sum = unsafe { sum.unchecked add(value) };
}

sum

14

% sum_normal / same (+/- 10%) > sum_unchecked
U161 &

Answer

sum_normal vs sum_unchecked Performance (10,000 integers)

sum_unchecked NG

sum_normal |

Same performance

{codspeed s>}

Why?

Rust's integer overflow behavior depends on the build profile:

[profile.dev] [profile.release]
overflow-checks = true overflow-checks = false
Check overflow and panic Wrap silently without check

So in release profile, x + y is equivalentto x.unchecked_add(y)

{codspeed s>}

Enforcing overflow checks

Let's change the profile to enforce overflow checks

[profile.release]

overflow-checks = true

pub fn sum_normal(arr: &[u32]) — u32 {
let mut sum = Qu32;
for &value in arr {
sum = sum + value;

}
Sum

}

fn sum_unchecked(arr: &§[u32]) — u32 {

Rerun the benchmark P ple sl Rl
for &value in arr {
sum = unsafe { sum.unchecked_add(value) };

}
sum

}

{codspeed s>}

Enforcing overflow checks - Results

sum_normal (+) vs sum_unchecked (unchecked_add) with overflow_checks = true

—

SsUImT_Unc necked _
lunchecked _add)

+ is now indeed way slower (~10x)

{codspeed s>}

Be careful about integer overflow

This compiles and runs fine in release

fn main() {
let a = u32::MAX;
println!("{a}"); stdout
let b = a + 1; 4294967295
println!("{b}"); 0

assert!(b = 0);

Ariane flight V88 exploded on 4 June 1996
because of inadequate overflow protection

Resources: rust-playground o~

{codspeed s>}

Case study #6: Bound checks with slices

fn max_indexed(arr: &[u32]) — u32 {
let mut max = arr[0];

arr size 10000 with random for i in 1..arr.len() {
integers from 1to 1000 if arr[i] > max {
max = arr(i];
}
}
max

}

fn max unchecked access(arr: &[u32]) — u32 {
Get the max item of a slice let mut max = unsafe { xarr.get_unchecked(0) };

for 1 in 1..arr.len() {

let value = unsafe { *arr.get _unchecked(i) };
if value > max {

nax = value;

maXx

Which is faster?

fn max_indexed(arr: &[u32]) — u32 {
let mut max = arr[0];
for 1 in 1..arr.len() {
if arr[i] > max {
max = arr[i];
}

Ma X

}

fn max_unchecked_access(arr: &[u32]) — u32 {
let mut max = unsafe { *arr.get_unchecked(0) };

for 1 in 1..arr.len() {
let value = unsafe { *arr.get _unchecked(i) };
if value > max {
max = value;
}

Mmax
| i

> max_indexed V/ same (+/-)74
10%) max_unchecked_access

$159 &

Answer

Max Algorithm Comparison (Indexed vs. Unchecked Access)

|
dCCess

max_indexed |EE_I

Same performance

{codspeed s>}

Why

The compiler recognizes the pattern and can prove that 1 will stay in the
bounds of the slice.

for 1 in 1..arr.len() {
if arr[i] > max {
max = arr[i];
}

It removes the checks, making arr[i] equivalentto get _unchecked(1)

{codspeed s>}

Case study #/7: String concatenation

pub fn url_format_macro(scheme: &str, host: &str, path: &str, query: &str, fragment: &str) — String {
format!("{scheme}://{host}{path}?{query}id fragment}")
}

pub fn url_format_plus(scheme: &str, host: &str, path: &str, query: &str, fragment: &str) — String {
scheme.to_string() + "://" + host + path + "?" + query + "#" + fragment
}

Which is faster?

101

pub fn url_format_macro(
scheme: &str,
host: &str,
path: bstr,
query: b&str,
fragment: &str,
) = String {
format! (" {scheme}://{host}{path}?{query}#{fragment}"”)

}

pub fn url_format_plus(
scheme: &str,
host: &str,
path: &str,
query: &str,
fragment: &str,
) = String {
scheme.to_string() + "://" + host + path + "?" + query + "#" + fragment

}

17

¥ same (+/- 10%) / url_format_plus

) 4
url_format_macro

d158 &

{codspeed s>}

Why?

¢ Formatting machinery overhead:
o Creatinga fmt: :Arguments object
o Dynamic dispatch through trait objects
o Additional abstraction layers to support complex formatting
options
e This time the compiler doesn’'t manage to optimize as much as in

other examples

{codspeed s>}

Answer

url_format_macro vs url_format_plus (Overall Grouped Average)

url_format _plus is faster

But this + chain also has iIssues

scheme.to string() + "://" + host + path + "?" + query + "#" + fragment

'

let templ = scheme + "://";
let temp2 = templ + host;
let temp3 = temp2 + path;
‘.

Every single + operation allocates a new string

let
let
let

url

urt.

url.

url
url

url

url.

url

url

{codspeed s>}

String concatenation optimization

pub fn url_format_push(scheme: &str, host: &str, path: &str, query: &str, fragment: &§str) — String {

extra = 3 + 1 + 1;
capacity = scheme.len() + host.len() + path.len() + query.len() + fragment.len() + extra;

mut url = String::with_capacity(capacity);

.push_str(scheme);

push_str("://");
push_str(host);

.push_str(path);
.push_str("?");

.push_str(query);

push_str("#");

.push_str(fragment);

{codspeed s>}

String concatenation optimization results

pub fn url_format_push(scheme: &str, host: &str, path: &str, query: &str, fragment: &§str) — String {

let
let
let

extra = 3 + 1 + 1;

capacity

mut url =

.push_str(
.push_str(
.push_str(
.push_str(
.push_str(

.push_str(

.push_str(

.push_str(

scheme.len() + host.len() + path.len() + query.len() + fragment.len() + extra;

String::with_capacity(capacity);

cheme);

Jra

ost);
ath):

'?II

Allocates memory once

oe

uery);

#ll

ra

) ; |
ik Uses push_str to extend the string
without creating a new one

String concatenation optimization results

push avg

R T N W e

T e S W N A N N

0 1 JS 2 US CRVE 4 JUs O US

url format push is faster: 1.9us vs 3.8us vs 4.7s

Leaderboard
195 players

1 /723p +723
2 646p +646
AVAreomUIvVIIERIP.

3 641p +641
4 612p +612

{codspeed s>}

| earnings

- The compiler optimizes most of the naive patterns for you
- Use const when possible

- Inline assembly can be an optimization Killer

- Be careful about integer overflow wrapping by default

- Pre-allocate String of predictable length

Before optimizing, always measure to make
sure you're going in the right direction

Be careful about human intuition,
always measure!

111

{codspeed &>}

Optimize Performance,
Eliminate Regressions

Profiling

. [flake8_bugbear] message based on expression location [B015] (#121611)

r Improvements Regressions Untouched New Dropped ignored
"% 2 0 28 12 6 0
Commits

rassed

ox 239.4 us > 239.3us

{ codspeed o>}

{codspeed >}

Free for open source

Loved by performance experts

AVercel éﬂ CLOUDFLARE é Pydantic

ASERAL

hil ByteDance LangChain

and many more! (codspeed.io/explore)

Come by our booth

to continue the discussion!

{ codspeed #»}

Jolin us for an
Happy Hour! € &
Tonight at /pm

Food and drinks are on us!

Registration

